Open Access
Issue
JNWPU
Volume 43, Number 1, February 2025
Page(s) 171 - 180
DOI https://doi.org/10.1051/jnwpu/20254310171
Published online 18 April 2025
  1. ZHAO Yonghao, MAO Qingzhong. Toughening of nanometallic structured materials[J]. Acta Metallurgica Sinica, 2022, 58(11): 1385–1398. [Article] (in Chinese) [Google Scholar]
  2. RITCHIE R O. The conflicts between strength and toughness[J]. Nature Materials, 2011, 10(11): 817–822. [Article] [Google Scholar]
  3. DONG S, ZHOU J, HUI D, et al. Size dependent strengthening mechanisms in carbon nanotube reinforced metal matrix composites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 68: 356–364 [Google Scholar]
  4. YE C, SUSLOV S, LIN D , et al. Cryogenic ultrahigh strain rate deformation induced hybrid nanotwinned microstructure for high strength and high ductility[J]. Journal of Applied Physics, 2014, 115(21): 1–6 [Google Scholar]
  5. LIU Junpeng, CHEN Hao, ZHANG Chi, et al. Research progress on low-temperature plastic deformation mechanism and toughening of high-entropy alloys[J]. Acta Metallurgica Sinica, 2023, 59(6): 727–743 (in Chinese) [Google Scholar]
  6. ZHU Yunpeng, QIN Jiayu, WANG Jinghui, et al. Microstructure and properties of AZ61 ultra-fine grained magnesium alloy prepared by mechanical ball milling combined with powder metallurgy[J]. Acta Metallurgica Sinica, 2023, 59(2): 257–266 (in Chinese) [Google Scholar]
  7. LU K. The future of metals[J]. Science, 2010, 328(5976): 319–320 [Google Scholar]
  8. MEYERS M A, MISHRA A, BENSON D J. Mechanical properties of nanocrystalline materials[J]. Progress in Materials Science, 2006, 51(4): 427–556. [Article] [Google Scholar]
  9. LU Ke. Gradient nanostructured materials[J]. Acta Metallurgica Sinica, 2015, 51(1): 1–10 (in Chinese) [Google Scholar]
  10. WANG L, WEI Y H, CHEN J C, et al. Macro-micro modeling and simulation on columnar grains growth in the laser welding pool of aluminum alloy[J]. International Journal of Heat and Mass Transfer, 2018, 123: 826–838. [Article] [Google Scholar]
  11. LI X, LU L, LI J G, et al. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys[J]. Nature Reviews Materials, 2020, 5(9): 706–723. [Article] [Google Scholar]
  12. FANG T H, LI W L, TAO N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper[J]. Science, 2011, 331(6024): 1587–1590. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  13. LU K. Making strong nanomaterials ductile with gradients[J]. Science, 2014, 345(6203): 1455–1456. [Article] [Google Scholar]
  14. CHENG Z, ZHOU H, LU Q, et al. Extra strengthening and work hardening in gradient nanotwinned metals[J]. Science, 2018, 362(6414): 1925. [Article] [Google Scholar]
  15. WU X L, JIANG P, CHEN L, et al. Synergetic strengthening by gradient structure[J]. Materials Research Letters, 2014, 2(4): 185–191. [Article] [Google Scholar]
  16. ZHAO S, KAD B, WEHRENBERG C E, et al. Generating gradient germanium nanostructures by shock-induced amorphization and crystallization[J]. Proceedings of the National Academy of Sciences, 2017, 114(37): 9791–9796. [Article] [Google Scholar]
  17. WU X, JIANG P, CHEN L, et al. Extraordinary strain hardening by gradient structure[J]. Proceedings of the National Academy, 2014, 111(20): 7197–7201. [Article] [Google Scholar]
  18. LU N, WANG X, SUO Z. Failure by simultaneous grain growth, strain localization, and interface debonding in metal films on polymer substrates[J]. Journal of Materials Research, 2009, 24(2): 379–385. [Article] [Google Scholar]
  19. XIANG Y, LI T, SUO Z. High ductility of a metal film adherent on a polymer substrate[J]. Applied Physics Letters, 2005, 87(16): 161–170 [Google Scholar]
  20. LI J J, LU W J, CHEN S H. Revealing extra strengthening and strain hardening in heterogeneous two-phase nanostructures[J]. International Journal of Plasticity, 2020, 126: 102626. [Article] [Google Scholar]
  21. HART E W. Theory of the tensile test[J]. Acta Metallurgica, 1967, 15(2): 351–355. [Article] [Google Scholar]
  22. HUTCHINSON J W, NEALE K W. Influence of strain rate sensitivity on necking under uniaxial tension[J]. Acta Metallurgica, 1977, 25(8): 839–846. [Article] [Google Scholar]
  23. YASNIKOV I S, VINOGRADOV A, ESTRIN Y. Revisiting the Considère criterion from the viewpoint of dislocation theory fundamentals[J]. Scripta Materialia, 2014, 76: 37–40. [Article] [Google Scholar]
  24. CAO P. The strongest size in gradient nanograined metals[J]. Nano Letters, 2020, 20(2): 1440–1446. [Article] [Google Scholar]
  25. ASHBY M F. The deformation of plastically non-homogeneous materials[J]. Journal of Theoretical Experimental and Applied Physics, 1970, 21(170): 399–424 [Google Scholar]
  26. ZHOU X, LI X, LU K. Size dependence of grain boundary migration in metals under mechanical loading[J]. Physical Review Letters, 2019, 122(12): 126101. [Article] [Google Scholar]
  27. OROWAN E. Classification and nomenclature of internal stresses[J]. Journal of the Institute of Metals, 1947, 73: 47–59 [Google Scholar]
  28. ASHBY M F. Work hardening of dispersion-hardened crystals[J]. Journal of Theoretical Experimental and Applied Physics, 1966, 14(132): 1157–1178 [Google Scholar]
  29. WU X, ZHU Y. Heterogeneous materials: a new class of materials with unprecedented mechanical properties[J]. Materials Research Letters, 2017, 5(8): 527–532 [Google Scholar]
  30. BAYLEY C J, BREKELMANS W A M, GEERS M G D. A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity[J]. International Journal of Solids and Structures, 2006, 43(24): 7268–7286 [Google Scholar]
  31. HIRTH J P, LOTHE J, MURA T. Theory of dislocations[J]. Journal of Applied Mechanics, 1983, 50(2): 476–477 [Google Scholar]
  32. YANG M, PAN Y, YUAN F, et al. Back stress strengthening and strain hardening in gradient structure[J]. Materials Research Letters, 2016, 4(3): 145–151 [Google Scholar]
  33. ZHU Y, WU X. Perspective on hetero-deformation induced (HDI) hardening and back stress[J]. Materials Research Letters, 2019, 7/8/9/10: 393–398 [Google Scholar]
  34. ZHAO H Z, YOU Z S, TAO N R, et al. Anisotropic toughening of nanotwin bundles in the heterogeneous nanostructured Cu[J]. Acta Materialia, 2022, 228: 117748 [Google Scholar]
  35. CHEN F, TAN Y B, SHI W, et al. Enhanced strengthening effect via nanotwinning in cryo-rolled FeCoCrNiMo0.2 high-entropy alloys[J]. Materials Science and Engineering: A, 2023, 866: 144676 [Google Scholar]
  36. XIE Y, LU T, ZHAO P, et al. Cryoforged nanotwinned CoCrNi medium-entropy alloy with exceptional fatigue property at cryogenic temperature[J]. Scripta Materialia, 2023, 237: 115718 [Google Scholar]
  37. DUAN F, LIN Y, PAN J, et al. Ultrastrong nanotwinned pure nickel with extremely fine twin thickness[J]. Science Advances, 2021, 7(27): 5113 [Google Scholar]
  38. JING L, PAN Q, LONG J, et al. Effect of volume fraction of gradient nanograined layer on high-cycle fatigue behavior of Cu[J]. Scripta Materialia, 2019, 161: 74–77 [Google Scholar]
  39. CHEN W, YOU Z S, TAO N R, et al. Mechanically-induced grain coarsening in gradient nano-grained copper[J]. Acta Materialia, 2017, 125: 255–264 [Google Scholar]
  40. LIN Y, PAN J, LUO Z, et al. A grain-size-dependent structure evolution in gradient-structured (GS) Ni under tension[J]. Nano Materials Science, 2020, 2(1): 39–49 [Google Scholar]
  41. LU Y, DUAN F, PAN J, et al. High-throughput screening of critical size of grain growth in gradient structured nickel[J]. Journal of Materials Science & Technology, 2021, 82: 33 [Google Scholar]
  42. WU X, YANG M, YUAN F , et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility[J]. Proceedings of the National Academy of Sciences, 2015, 112(47): 14501–14505 [Google Scholar]
  43. CAHN J W, MISHIN Y, SUZUKI A. Coupling grain boundary motion to shear deformation[J]. Acta materialia, 2006, 54(19): 4953–4975 [Google Scholar]
  44. GOTTSTEIN G, MOLODOV D A, SHVINDLERMAN L S. Grain boundary migration in metals: recent developments[J]. Interface Science, 1998, 6: 7–22 [Google Scholar]
  45. LLOYD D J. Particle reinforced aluminium and magnesium matrix composites[J]. International Materials Reviews, 1994, 39(1): 1–23 [Google Scholar]
  46. LYU H, ZHANG Y, LI H. The effect of grain size gradient on plastic deformation of gradient aluminum[J]. Metall Mater Trans A, 2022, 53(9): 3428–3440 [Google Scholar]
  47. LIN Y, PAN J, ZHOU H F, et al. Mechanical properties and optimal grain size distribution profile of gradient grained nickel[J]. Acta Materialia, 2018, 153: 279–289 [Google Scholar]
  48. ZHOU S, HOU Z, LIU N, et al. Optimal grain size distribution in gradient nano-grained nickel[J]. Vacuum, 2023, 210: 111854 [Google Scholar]
  49. YANG Z, ZHENG J, ZHAN K, et al. Surface characteristic and wear resistance of S960 high-strength steel after shot peening combing with ultrasonic sprayed graphene oxide coating[J]. Journal of Materials Research and Technology, 2022, 18: 978–989 [Google Scholar]
  50. JAYALAKSHMI M, HUILGOL P, BHAT B R, et al. Insights into formation of gradient nanostructured(GNS) layer and deformation induced martensite in AISI 316 stainless steel subjected to severe shot peening[J]. Surface and Coatings Technology, 2018, 344: 295–302 [Google Scholar]
  51. LU K, LU J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment[J]. Materials Science & Engineering: A, 2004, 375: 38–45 [Google Scholar]
  52. ANAND KUMAR S, SATISH KUMAR P, GANESH SUNDARA RAMAN S, et al. Influence of SMAT parameter son microstructural and mechanical properties of Al-Mg-Si alloy AA6061[J]. Journal of Materials Engineering and Performance, 2017, 26: 1947–1957 [Google Scholar]
  53. LI W L, TAO N R, LU K. Fabrication of a gradient nanomicrostructured surface layer on bulk copper by means of a surface mechanical grinding treatment[J]. Scripta Materialia, 2008, 59(5): 546–549 [Google Scholar]
  54. LIU X C, ZHANG H W, LU K. Formation of nano-laminated structure in nickel by means of surface mechanical grinding treatment[J]. Acta Materialia, 2015, 96: 24–36 [Google Scholar]
  55. XU W, LIU X C, LU K. Strain-induced microstructure refine mentinpure Al below 100 nm insize[J]. Acta Materialia, 2018, 152: 138–147 [Google Scholar]
  56. HUANG H W, WANG Z B, LU J, et al. Fatigue behaviors of AISI316L stainless steel with a gradient nanostructured surface layer[J]. Acta Materialia, 2015, 87: 150–160 [Google Scholar]
  57. NALLA R K, ALTENBERGER I, Noster U, et al. On the influence of mechanical surface treatments-deep rolling and laser shock peening-on the fatigue behavior of Ti-6Al-4V at ambient and elevated temperatures[J]. Materials Science and Engineering: A, 2003, 355(1/2): 216–230 [Google Scholar]
  58. WU L, TANG X, LIU J, et al. Improvement of strength-ductility synergy of Mg-Al-Mn alloy using laser shock peening-induced gradient nanostructure[J]. Materials Science and Engineering: A, 2023, 871: 144844 [Google Scholar]
  59. CHEN D M. Gradient nanostructured materials induced by ultrasonic surface rolling process[J]. Rare Metal Materials and Engineering, 2021, 50(10): 3562–3576 [Google Scholar]
  60. GHALEHBANDI S M, MALAKI M, GUPTA M. Accumulative roll bonding-a review[J]. Applied Sciences, 2019, 9(17): 3627 [Google Scholar]
  61. ZENG L, ZENG L, LI W, et al. Development of a heterogeneous lamellar structure based on layer instabilities during accumulative roll bonding[J]. Advanced Engineering Materials, 2023, 25(17): 2300435 [Google Scholar]
  62. CHEN H, LIU T, YU H, et al. Dependence of microstructure and hardening behavior on torsion strain and strain rate in extruded AZ31 rods[J]. Advanced Engineering Materials, 2016, 18(9): 1683–1689 [Google Scholar]
  63. GUO N, SONG B, GUO C , et al. Improving tensile and compressive properties of magnesium alloy rods via a simple pre-torsion deformation[J]. Materials & Design, 2015, 83: 270–275 [Google Scholar]
  64. YANG L, CHEN Z, MA X, et al. Improvement of strength and ductility in a gradient structured Ni fabricated by severe torsion deformation[J]. Materials Science and Engineering: A, 2021, 826: 141980 [Google Scholar]
  65. ZHANG Tuanwei, JIAO Zhiming, CHANG Hui, et al. High-velocity impact induces the mechanical behavior of large-gradient nanostructured high-entropy alloys[J]. Scientific Bulletin, 2023, 68(24): 3125–3136 (in Chinese) [Google Scholar]
  66. KATTOURA M, TELANG A, MANNAVA S R, et al. Effect of ultrasonic nanocrystal surface modification on residual stress, microstructure and fatigue behavior of ATI 718Plus alloy[J]. Materials Science & Engineering A, 2018, 711: 364–377 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.