Open Access
Issue
JNWPU
Volume 37, Number 4, August 2019
Page(s) 838 - 845
DOI https://doi.org/10.1051/jnwpu/20193740838
Published online 23 September 2019
  1. Xiong W, José P, Sylvie M. Performance Analysis of Distributed Source Parameter Estimator(DSPE) in the Presence of Modeling Errors Due to the Spatial Distributions of Sources[J]. Signal Processing, 2018, 143: 146–151 [Article] [CrossRef] [Google Scholar]
  2. Wu T, Deng Z H, Gu Q Y. Estimation for Two-Dimensional Nonsymmetric Coherently Distributed Source in L-Shaped Arrays[EB/OL]. (2018-09-03)[2019-04-21]. https://www.hindawi.com/journals/ijap/2018/5247919/. [Google Scholar]
  3. Meng Y, Stoica P. Estimation of Direction of Arrival of Spatially Dispersed Signals in Array Processing[J]. IEE Proceedings-Radar Sonar and Navigation, 1995, 143(1): 1–9 [CrossRef] [Google Scholar]
  4. Besson O, Stoica P. Decoupled Estimation of DOA and Angular Spread for a Spatially Distributed Source[J]. IEEE Trans on Signal Processing, 2000, 48(7): 1872–1882 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  5. Shahbazpanahi S, Valaee S, Gershman A B. A Covariance Fitting Approach to Parametric Localization of Multiple Incoherently Distributed Sources[J]. IEEE Trans on Signal Processing, 2004, 32(3): 592–600 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  6. Raich R, Goldberg J, Messer H. Bearing Estimation for a Distributed Source:Modeling, Inherent Accuracy Limitations and Algorithms[J]. IEEE Trans on Signal Processing, 2000, 48(2): 429–441 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  7. Besson O, Vincent F, Stoica P, et al. Approximate Maximum Likelihood Estimators for Array Processing in Multiplicative Noise Environments[J]. IEEE Trans on Signal Processing, 2000, 48(9): 2506–2518 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  8. Zoubir A, Wang Y. Robust Generalised Capon Algorithm for Estimating the Angular Parameters of Multiple Incoherently Distributed Sources[J]. IET Signal Processing, 2008, 2(2): 163–168 [Article] [CrossRef] [Google Scholar]
  9. Dai Z, Cui W, Ba B. Two-Dimensional DOA Estimation for Coherently Distributed Sources with Symmetric Properties in Crossed Arrays[EB/OL]. (2017-07-06)[2019-03-01]. https://www.mdpi.com/1424-8220/17/6/1300 [Google Scholar]
  10. Wen C, Shi G, Xie X. Estimation of Directions of Arrival of Multiple Distributed Sources for Nested Array[J]. Signal Processing, 2017, 130: 315–322 [Article] [CrossRef] [Google Scholar]
  11. Yang X, Zheng Z, Chi C K. Low-Complexity 2D Parameter Estimation of Coherently Distributed Noncircular Signals Using Modified Propagator[J]. Multidimensional Systems & Signal Processing, 2017, 28(2): 407–426 [Article] [CrossRef] [Google Scholar]
  12. Wan L, Han G, Jiang J. A DOA Estimation Approach for Transmission Performance Guarantee in D2D Communication[J]. Mobile Networks & Applications, 2017, 22(6): 998–1009 [Article] [CrossRef] [Google Scholar]
  13. Boujemâa H. Extension of COMET Algorithm to Multiple Diffuse Source Localization in Azimuth and Elevation[J]. Trans on Emerging Telecommunications Technologies, 2005, 16(6): 557–566 [Article] [CrossRef] [Google Scholar]
  14. Wu T, Deng Z H, Li Y W. Two-Dimensional DOA Estimation for Incoherently Distributed Sources with Uniform Rectangular Arrays[EB/OL]. (2018-10-23)[2019-04-12]. https://www.mdpi.com/1424-8220/18/11/3600 [Google Scholar]
  15. Zheng Zhi. Study on Low-Complexity Parameter Estimation Method for Distributed Sources[D]. Chengdu, University of Electronic Science and Technology of China, 2011(in Chinese) (In chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.