Open Access
Issue
JNWPU
Volume 39, Number 6, December 2021
Page(s) 1312 - 1319
DOI https://doi.org/10.1051/jnwpu/20213961312
Published online 21 March 2022
  1. Cai K Y, Wen C Y, Zhang M L. Fuzzy states as a basis for a theory of fuzzy reliability[J]. Microelectronics Reliability, 1993, 33(15) : 2253–2263 10.1016/0026-2714(93)90065-7 [CrossRef] [Google Scholar]
  2. Mirakbari M, Ganji A. Reliability analysis of a rangeland system: the application of profust theory[J]. Stochastic Environmental Research and Risk Assessment, 2010, 24(3) : 399–409 10.1007/s00477-009-0329-8 [Google Scholar]
  3. Huang Hongzhong. Fuzzy reliability analysis of generalized static strength of mechanical structure based on fuzzy criterion[J]. Journal of Mechanical Strength, 2000, 22(1) : 36–40 10.3321/j.issn:1001-9669.2000.01.011 (in Chinese) [Google Scholar]
  4. Dong Yuge, Zhu Wenyu, Chen Xinzhao. Study on a calculate method of machine fuzzy reliability[J]. Journal of Systems Engineering, 2000, 15(1) : 7–12 10.3969/j.issn.1000-5781.2000.01.002 (in Chinese) [Google Scholar]
  5. Li Guijie, Lyu Zhenzhou. Saddlepoint approximation for general failure probability with fuzzy failure and fuzzy safety state[J]. Chinese Quarterly of Mechanics, 2010, 31(1) : 76–82 [Article] (in Chinese) [Google Scholar]
  6. Song Jun, Lyu Zhenzhou. Moment method for general failure probability with fuzzy failure state and fuzzy safety state[J]. Engineering Mechanics, 2008(2) : 71–77 [Article] (in Chinese) [Google Scholar]
  7. Feng K X, Lu Z Z, Pang C, et al. Efficient numerical algorithm of profust reliability analysis: an application to wing box structure[J]. Aerospace Science and Technology, 2018, 80 : 203–211 10.1016/j.ast.2018.07.009 [CrossRef] [Google Scholar]
  8. Yun W Y, Lu Z Z, Feng K X, et al. A novel step-wise AK-MCS method for efficient estimation of fuzzy failure probability under probability inputs and fuzzy state assumption[J]. Engineering Structures, 2019, 183 : 340–350 10.1016/j.engstruct.2019.01.020 [CrossRef] [Google Scholar]
  9. Zhang X B, Lu Z Z, Feng K X, et al. Reliability sensitivity based on profust model: an application to aircraft icing analysis[J]. AIAA Journal, 2019, 57(12) : 5390–5402 10.2514/1.J058475 [NASA ADS] [CrossRef] [Google Scholar]
  10. Zhu S P, Liu Q, Zhou J, et al. Fatigue reliability assessment of turbine discs under multisource uncertainties[J]. Fatigue & Fracture of Engineering Materials & Structures, 2018, 41(6) : 1291–1305 [Article] [CrossRef] [Google Scholar]
  11. Han Zhonghua. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11) : 3197–3225 [Article] (in Chinese) [Google Scholar]
  12. Li Jian. Study of surrogate model approximation and surrogate-enhanced structural reliability analysis[D]. Shanghai: Shanghai Jiaotong University, 2013 (in Chinese) [Google Scholar]
  13. Zhao Wei. Study on surrogate model methods for structural reliability analysis[D]. Harbin: Harbin Institute of Technology, 2012 (in Chinese) [Google Scholar]
  14. Zhu Shunpeng, Huang Hongzhong, Xie Liyang. Prediction of fuzzy fatigue life under low amplitude loading strengthening[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6) : 1048–1052 10.3321/j.issn:1000-6893.2009.06.013 (in Chinese) [Google Scholar]
  15. Bbrgonovo E. A new uncertainty importance measure[J]. Reliability Engineering and System Safety, 2007, 92(6) : 771–784 10.1016/j.ress.2006.04.015 [CrossRef] [Google Scholar]
  16. Sack J, Schiller S B, Welch W J. Design for computer experiment[J]. Technometrics, 1989, 31(1) : 41–47 10.1080/00401706.1989.10488474 [CrossRef] [Google Scholar]
  17. Bichon B J, Eldred M S, Swiler L P, et al. Efficient global reliability analysis for nonlinear implicit performance functions[J]. AIAA Journal, 2008, 46(10) : 2459–2468 10.2514/1.34321 [Google Scholar]
  18. Zhou S T, Lu Z Z, Ling C Y, et al. Global reliability sensitivity analysis index and its efficient numerical simulation solution in presence of both random and interval hybrid uncertainty[J]. Structural and Multidisciplinary Optimization, 2021, 63(4) : 551–573 10.1007/s00158-020-02807-w [CrossRef] [Google Scholar]
  19. Lyu Z Y, Lu Z Z, Wang P. A new learning function for Kriging and its applications to solve reliability problems in engineering[J]. Computers and Mathematics with Applications, 2015, 70(5) : 1182–1197 [Article] [Google Scholar]
  20. Echard B, Gayton N, Lemaire M. AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation[J]. Structural Safety, 2011, 33(2) : 145–154 [Article] [Google Scholar]
  21. Ling C Y, Lu Z Z, Sun B, et al. An efficient method combining active learning Kriging and Monte Carlo simulation for profust failure probability[J]. Fuzzy Sets and Systems, 2020, 387 : 89–107 [Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.