Open Access
Issue
JNWPU
Volume 42, Number 1, February 2024
Page(s) 98 - 107
DOI https://doi.org/10.1051/jnwpu/20244210098
Published online 29 March 2024
  1. WANG Chen, WANG Xiaojun, ZHANG Hongjian, et al. Research on the development of reusable launch vehicle[J]. Aerodynamic Missile Journal, 2018(9): 18–26 [Article] (in Chinese) [Google Scholar]
  2. LU P. Introducing computational guidance and control[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(2): 193. [Article] [Google Scholar]
  3. SOSTARIC R, REA J. Powered descent guidance methods for the moon and mars[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit, 2005: 6287 [Google Scholar]
  4. PENG Qibo, LI Haiyang, SHEN Hongxin. Rapid lunar exact landing trajectory optimization via Gauss pseudospectral method[J]. Journal of Astronautics, 2010, 31(4): 1012–1016. [Article] (in Chinese) [Google Scholar]
  5. ACIKMESE B, PLOEN S R. Convex programming approach to powered descent guidance for mars landing[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5): 1353–1366. [Article] [Google Scholar]
  6. LIU X. Fuel-optimal rocket landing with aerodynamic controls[J]. Journal of Guidance, Control, and Dynamtcs, 2019, 42(1): 65–77. [Article] [Google Scholar]
  7. SAGLIANO M. Pseudospectral convex optimization for powered descent and landing[J]. Journal of Guidance, Control, and Dynamics, 2017, 41(2): 320–334 [Google Scholar]
  8. WANG Jinbo, CUI Naigang, GUO Jifeng, et al. High precision rapid trajectory optimization algorithm for launch vehicle landing[J]. Control Theory and Applications, 2018, 35(3): 389–398. [Article] (in Chinese) [Google Scholar]
  9. SZMUK M, ACIKMESE B, BERNING A W. Successive convexification for fuel-optimal powered landing with aerodynamic drag and non-convex constraints[C]//AIAA Guidance, Navigation, and Control Conference, 2016: 0378 [Google Scholar]
  10. WANG Z, LU Y. Improved sequential convex programming algorithms for entry trajectory optimization[J]. Journal of Spacecraft and Rockets, 2020, 57(6): 1373–1386. [Article] [Google Scholar]
  11. ZHANG Zhiguo, MA Ying, GENG Guangyou, et al. Convex optimization method used in the landing-phase online guidance of rocket vertical recovery[J]. Journal of Ballistics, 2017, 29(1): 9–16. [Article] (in Chinese) [Google Scholar]
  12. WANG J, CUI N, WEI C. Optimal rocket landing guidance using convex optimization and model predictive control[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(5): 1078–1092. [Article] [Google Scholar]
  13. AN Ze, XIONG Fenfen, LIANG Zhuonan. Landing-phase guidance of rocket using bias proportional guidance and convex optimization[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 247–260. [Article] (in Chinese) [Google Scholar]
  14. MA Y, PAN B. Parallel-structured Newton-type guidance by using modified Chebyshev-Picard iteration[J]. Journal of Spacecraft and Rockets, 2020, 58(3): 729–740 [Google Scholar]
  15. MA Y, PAN B, TANG S. Improved parallel-structured Newton-type guidance for launch vehicles under thrust drop fault[J]. Journal of Spacecraft and Rockets, 2021, 59(2): 467–481 [Google Scholar]
  16. BAI X, JUNKINS J L. Modified Chebyshev-Picard iteration methods for solution of initial value problems[J]. The Journal of the Astronautical Sciences, 2012, 59(1): 327–351 [Google Scholar]
  17. JUNKINS J L, BANI YOUNES A, WOOLLANDS R M, et al. Picard iteration, Chebyshev polynomials and Chebyshev-Picard methods: application in astrodynamics[J]. The Journal of the Astronautical Sciences, 2013, 60(3): 623–653 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.